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要約

　社会は、利他的で協力的な相互作用で成り立っている。しかし、他者を収奪し自己の利益を最大化する利己的な者が、

自然選択では優位である。この協力ジレンマの機構を解明するために、多くの研究が平均得点を基礎として進化ゲーム

理論により報告されてきた。しかし、これらの研究は次の深刻な問題を持っている。平均得点を算出するには、すべて

の公共財ゲームですべてのプレーヤーのすべての得点をすべてのプレーヤーが知らねばならず、それは現実には不可能

である。それ故、平均得点ではなく、個人的な学習によって知り得た得点でプレーヤーが行動することを基礎として、

どのように協力社会に至るのかを遷移確率を用いて計算する必要がある。本論文で、我々はプール罰をする協力的な人

が公共財を増やす小さな乗数 r においてさえもフリーライダーに打ち勝ち、誰の助けも借りずに協力社会を築くことを

理論的に示す。これには、フリーライダーが受ける罰の量がプール罰をする人が支払うコスト量よりも大きいことが必

要である。また、より小さい集団やより高いゲーム参加率が協力社会をより成立させやすいことも理論的に証明する。
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1.  Introduction
Cooperation is a fundamental human behavior (Axelrod & 
Hamilton, 1981; Boyd & Mathew, 2007; Clutton-Brock, 2009; 
Dugatkin, 1997; Fehr & Fischbacher, 2003; Hill, 2002; Kaplan, 
Hill, Lancaster, & Hurtado, 2000; Nowak, 2006; Nowak, 2006; 
Trivers, 1971) with the potential to improve individual wealth, 
but it remains a fragile strategy. Individuals who do not con-
tribute but who exploit public goods fare better than those who 
contribute and pay costs; defectors who are called free-riders 
therefore obtain a greater payoff. If strategies that are more suc-
cessful spread, then cooperation will vanish from the population, 
and public goods will simultaneously disappear. This propaga-
tion of the defectors’ behavior can drive a population into a 
“tragedy of the commons” (Hardin, 1968). Thus, clarifying the 
mechanisms underlying this cooperation dilemma in society is 
of great importance to many fields of research.
      Some prior reports describe how costly punishment might 
yield a solution to the problem of the cooperation dilemma 
(Boyd, Gintis, & Bowles, 2003; Boyd & Richerson, 1992; 
Brandt, Hauert & Sigmund, 2006; Fehr & Gächter, 2002; Fehr 
& Gächter, 2000; Fowler, 2005; Hauert, Traulsen, Brandt, 
Sigmund, & Nowak, 2007; Ostrom, Walker, & Gardner, 1992; 

Rand, Dreber, Ellingsen, Fudenberg, & Nowak, 2009; Rock-
enbach & Milinski, 2006; Sigmund, Silva, Traulsen, & Hauert, 
2010; Sigmund & Hauert, 2001; Silva, Hauert, Traulsen, & 
Sigmund, 2010; Yamagishi, 1986). A stable cooperative society, 
however, does not form from only the three strategies of coop-
erators, defectors, and pool-punishers, as shown in Appendix I 
with a stochastic model. Cooperators contribute but do not pun-
ish. Defectors do not contribute to the public good but exploit 
the contributions of the other participants. Pool-punishers con-
tribute to the public good and punish all participants who do not 
contribute to the punishment mechanism. When one punisher 
invades a state occupied by defectors, he gains a meager payoff 
from public goods but must contribute to both public goods and 
the punishment pool. In contrast, although the defectors receive 
dispersed punishment by the punisher, they gain their payoff 
from public goods. Therefore, the defector payoff is greater than 
that of the punisher: the punisher cannot invade the state which 
the defectors occupy. Consequently, a cooperative society does 
not form.
      Some previous studies (Brandt et al., 2006; Hauert et al., 
2007; Silva et al., 2010) developed a voluntary public goods 
game based on the average payoffs and gave the necessary con-
ditions for natural selection to favor the emergence of coopera-
tion in finite populations. Sigmund et al. also reported that pool-
punishers will invade and take over with the four strategies of 
cooperation, defection, pool-punishment, and loner (Sigmund et 
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al., 2010). These studies rely on the assumptions that players can 
decide voluntarily whether to participate in the joint enterprise 
and that loners who do not participate can obtain an income in-
dependently of the other players’ decisions. But, the loners live 
alone, getting no payoffs from anyone else. They incur a cost 
for choosing to be alone. The assumption is therefore illogical. 
Accordingly, the payoff of the loner can be lower than that of 
the community in which all residents are defectors, where a co-
operative society does not emerge.

2.  Problem and Purpose
Now we must point out a severe problem in these studies based 
on the average payoffs. Estimating the average values requires 
sufficient knowledge of the payoffs for all players in all PGGs. 
Such omniscience is clearly difficult to achieve in practice. Peo-
ple make estimates every day based on insufficient knowledge. 
Players, therefore, make their decisions based on the payoffs 
received in games played before. Here we examine in compul-
sory PGGs how pool-punishers overcome defectors in societies 
comprising those following the three strategies of cooperation, 
defection, and pool-punishment through individual learning 
using knowledge of the payoffs from previous encounters, not 
based on the average payoffs.

3.  Model and method
In the compulsory PGG considered here, M denotes the popu-
lation size with variable compositions of X, Y, and V (M = X 
+ Y + V) as the quantities of cooperators, defectors, and pool-
punishers. The method is based on a straightforward application 
of evolutionary game theory to PGGs for finite populations 
of fixed size (M). Random samples of N individuals chosen 
from M individuals play a compulsory PGG (M ≥ N). If N ≥ 2 
individuals participate in the interaction, then each can decide 
whether to contribute a fixed amount, c > 0, to the common-
pool, and whether to contribute a fixed amount, G > 0, to the 
punishment-pool. c is multiplied by a factor of r (N > r > 1) 
and is divided among all players. Each player obtains rc – c if 
all players contribute, whereas their payoffs are 0 if all self-
interested players contribute nothing. Punishers specify and 
sanction players, through imposing penalties, based on the lat-
ters’ behaviors in a round. The payoffs for the players are the 
following, where x, y, and v respectively denote the numbers 
of participants of X, Y, and V (N = x + y + v). For x-players, the 

payoffs are rc           – c – Bvx +v
N

 in the presence of y-players and 

rc           – cx +v
N

 in the absence of y-players. For y-players, the pay-

off is rc           – Bvx +v
N

. For v-players, the payoff is rc           – c – Gx +v
N

.  

The PGG continues until all M individuals in a generation have 
played. Individual learning is executed as follows. Two play-
ers, i and j, who act respectively as a student and a teacher, are 
chosen randomly. Student i adopts the strategy of teacher j with 

probability 
1

1 + exp[–s(pj – pi)
 for s → ∞, where payoffs are 

obtained from previous games (Blume, 1993; McFadden, 1981; 
Sigmund et al., 2010; Szabo & Toke, 1998; Traulsen, Nowak, 
& Pacheco, 2006). This process is repeated for two or more epi-
sodes of learning. Once the learning is completed, the strategies 
are changed according to the probabilities. The strategy of a ran-
domly chosen player is changed by mutation. Each generation is 
established in this way. Evolution proceeds over many genera-
tions.

4.  Results and discussion
The appearance of a pool-punisher in a state occupied by defec-
tors is considered. Two combinations in PGGs are considered. 
The first combination comprises a single pool-punisher and N-1 

defectors. The pool-punisher’s payoff is 
rc
N

– c – G. The de-

fector’s payoff is 
rc
N

– B. The second combination comprises 

only defectors, whose payoff is zero. The payoffs to players 
depend on their partners in these PGGs and might differ from 
the average. Moreover, in this setting, learning leading to the 
preferential copying of successful strategies is dependent on the 
payoffs used.
      Given a case of individual learning in which two chosen 
individuals have knowledge of each other’s payoffs from previ-
ous games, and assuming that a pool-punisher with a maximum 
payoff (PVmax) is designated as a teacher and that a defector with 
a minimum payoff (PYmin) is designated as a student, then if the 
value of PVmax is higher than that of PYmin, defectors will imitate 
pool-punishers. The number of pool-punishers will increase if 
such a case occurs repeatedly by chance. Accordingly, invasion 
by a single pool-punisher requires that PVmax > PYmin. The case is 
described by the equation B > c + G,(1) where the punishment (B) 
that the defector receives is greater than the cost (c + G) to the 
pool-punisher.
      Next considering the case of i (i ≥ 2) pool-punishers and M 
– i defectors, based on the condition B > c + G, the maximum 
payoff for the pool-punishers is higher than the minimum payoff 
for the defectors. Therefore, the defectors will imitate the pool-
punishers and the pool-punishers thereby establish stable coop-
eration which defectors cannot invade. In addition, the transition 
probabilities with these payoffs resemble those with the average 
payoffs for the conversion of all cooperators to all defectors and 
vice versa, and for the conversion of all cooperators to all pool-
punishers and vice versa. This demonstrates that pool-punishers 
can establish a cooperative society under the condition B > c + G.
      A stationary distribution is computed using a transition 
matrix for the payoffs from previous games through individual 
learning. The fixation probabilities ρXV and ρYV tend to differ 
from the average payoffs, although some are the same: ρYX  = 0, 
ρVX = 0, and ρVY = 0 under the condition B > c + G. The transi-
tion matrix therefore reduces to the following:
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In this matrix, ρXY ≠ 0 and ρYV ≠ 0. The stationary distribution for 
(X, Y, V) is therefore given as (0, 0, 1), meaning that the pool-
punishers eventually prevail. That is, under the condition B > c 
+ G, pool-punishers can establish a cooperative society stably. 
Moreover, pool-punishers prevail in the four-strategy case that 
includes peer-punishers in addition to these other three strate-
gies. The constraint B > c + G means that the defector’s punish-
ment is greater than the pool-punisher’s cost. This inequality 
corresponds to a social rule within a policing system whereby 
the authorities impose an additional penalty on a tax cheat. Our 
society accepts this restriction as a rational rule.
      We should note the following point when a pool-punisher 
appears in a state occupied by defectors. In a case where a single 
pool-punisher overcomes N – 1 defectors, the cost G is convert-
ed to the total punishment B(N – 1). This conversion equates to 
a high-performance punishment mechanism. Examples of such 
practices might be found in primitive religions, white magic, 
oracles, shamanism, and social norms (Benson, 1989; Eliade, 

1972; Malinowski, 1961; Weber, 1976; Sugiyama, 1991). How-
ever, further research is necessary to clarify this situation.
The long-term frequencies of the three strategies can be exam-
ined using numerical simulations for a case in which the two 
individuals chosen as the student and the teacher know each 
other’s payoffs from their previous games through individual 
learning. For the case where M = 20 and N = 5, Figure 1 shows 
that a single pool-punisher who appears repeatedly by mutation 
eventually overcomes defectors in some generation under the 
condition B > c + G, even when the value of r is close to 1 (Figure 
2). However, when the condition B > c + G is not satisfied, de-
fectors prevail as shown in Figure 3.

Figure 1: Evolution of competition in populations consisting of 
X, Y, and V under condition B > c + G. Parameters are M = 20, 
N = 5, r = 3, c = 1, G = 0.5, B = 1.6, and µ =10–4. Updating oc-
curred by strong imitation (s → ∞), i.e., a student with a lower 
average payoff always imitated a teacher with a higher average 
payoff. The initial populations were set as X = 0, Y = 20, and V 
= 0.

Figure 2: Evolution of competition in populations consisting of 
X, Y, and V under condition B > c + G. Parameters are the same 
as those in Figure 1, except c = 1.1.

Figure 3: Evolution of competition in populations consisting of 
X, Y, and V under condition B < c + G. Parameters are the same 
as those in Figure 1, except B = 1.4.

Figure 4: Evolution of competition in populations consisting 
of X, Y, and V with a larger population and higher participation 
rate. Parameters are M = 100, N = 20, r = 3, c = 1, G = 0.5, B = 
1.6, and µ = 10–4. Initial populations were set as X = 0, Y = 100, 
and V = 0.

Figure 5: Evolution of competition in populations consisting of 
X, Y, and V with a larger population and lower participation rate. 
Parameters are M = 100, N = 5, r = 3, c = 1, G = 0.5, B = 1.6, 
and µ = 10–4. Initial populations were set as X = 0, Y = 100, and 
V = 0.
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Two simulation results with N = 20 and N = 5 in M = 100 are 
shown respectively as Figures 4 and 5. In N = 20 (Figure 4), 
a single pool-punisher easily overcomes defectors under the 
condition B > c + G. Nevertheless, as presented in Figure 5 for 
N = 5, a pool-punisher cannot overcome defectors with a lower 
participation rate even if the restriction is satisfied. This inability 
demonstrates that establishing a cooperative society depends on 
the participation ratio. This result agrees well with a sociolo-
gist’s observation (Olson, 1965; Putnam, 1993). In contrast, 
prior works based on the average payoffs reported that establish-
ing a cooperative society is independent of the participation rate, 
which is inconsistent with the observation.
We next specifically examine the probability of fixation when 
moving from a state with a single pool-punisher and M – 1 de-
fectors to a state with M pool-punishers under the condition B > 
c + G. This relates to the time period for establishing a coopera-
tive society.
In a case with one individual learning episode per generation, 
Nowak (2006) reported that the fixation probability x1 is the 

equation 
∑∏
−

= =

+
=

1

1

1
N

ij

j

ik
k

1x
γ

when moving from a state with a 

single pool-punisher and M – 1 defectors to that with M pool-

punishers. Here,  
k

k
k α

βγ =  and αk and βk respectively denote the 

probabilities of transitions from k to k + 1 and from k to k – 1. In 
a case with two episodes of individual learning per generation, 
the fixation probabilities are expressed as follows:
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Here, P is expressed by the matrix at the bottom of this page:
Calculating the values of αk and βk requires knowledge of the or-
der of the magnitudes of the pool-punisher’s payoffs PV and the 
defector’s payoffs PY. Although the values are dependent on the 
parameters c, r, G, and B, their order is the following:

…> PYN >…> PV1 > PYN-1 > PYN-2 > …> PY2 > PY1.

Here, PYN-1 and PV1 respectively denote the defector’s and pool-
punisher’s payoffs obtained by N – 1 defectors and a single 
pool-punisher in their PGG
      For N = 5, r = 3, c = 1, G = 0.5, and B = 1.6, the magnitudes 
have the following order:

PV5 > PV4 > PV3 > PY5 > PV2 > PV1 > PY4 > PY3 > PY2 > PY1.

We can thereby obtain the following equations:
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Here, NVh and NYN-h respectively denote the numbers of pool-
punishers with a payoff of PVh and defectors with a payoff of 
PYN-h in a population of M individuals. After a sufficient number 
of games, they are expressed as shown below.
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Therefore, we can derive the following equations:
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For the case in which N = 5, r = 1.1, c = 1, G = 0.5, and B = 1.6, 
the order of the magnitudes is

PY5 > PV5 > PV4 > PV3 > PV2 > PV1 > PY4 > PY3 > PY2 > PY1

and we can thereby obtain the following equations:
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      Table 1 presents results for a case with a low mutation rate 
and two episodes of individual learning during one generation. 
Fixation probabilities decrease concomitantly with increased M 
and decreased N, i.e., the fixation probability decreases with a 
decrease in the participation rate in PGG. A probability of 0.001 
is obtained for five participants in a population of 40 individu-
als. The emergence of a cooperative society requires that, on 
average, one pool-punisher arises per 1,000 events. Because 

pool-punishers appear repeatedly by mutation and because 
the cooperative society is stable once it has been established, 
this value is not regarded as unrealistic. Dunbar reported that 
establishing a stable cooperative society required 30-50 partici-
pants in a population of about 150 individuals (Dunbar, 1993). 
In the current case, the calculated probabilities are 0.03-0.18, 
which easily establishes cooperation.(2) It is noteworthy that the 
calculated probabilities are greater when the population size is 
smaller and the participation rate is higher. The observation of 
larger probabilities in smaller groups agrees
with sociological findings (Olson, 1965). Our results are also 
consistent with Putnam’s observation that the participation rate 
is highly correlated with the emergence of cooperation (Putnam, 
1993). Notably, the mutation rate is related to the emergence of 
a pool-punisher in a defector’s society. Higher values shorten 
the period necessary to establish a cooperative society. More-
over, if pool-punishers or cooperators who appear by mutation 
in a defector’s society are not chosen as students in the learning, 
they persist in the succeeding generation, leading to a higher 
probability than that calculated here and relaxing the require-
ment that B > c + G.

5. Conclusion
Through individual learning, we examined how pool-punishers 
overcome defectors to establish stable cooperation within a so-
ciety without help from either non-participants or players using 
other strategies. The main results are presented below. A pool-
punisher can establish stable cooperation easily in a society, 
provided that the defector’s punishment is greater than the pool-
punisher’s cost, which is consistent with our social rules. Higher 
fixation probabilities were found to be obtained with a smaller 
population size and a higher participation rate.  This study shed 

Table 1: Fixation probabilities moving from a single pool-punisher to all pool-punishers with two episodes of indi-
vidual learning during a generation. The probability shows that a smaller population and a higher participation rate 
higher values. The other parameters; r = 3; c = 1; G = 0.5; B = 1.6.

  M=10 M=20 M=30 M=40 M=50 M=60 M=70 M=80 M=90 M=100 

N=20   0.63 0.41 0.26 0.17 0.11 0.072 0.047 0.031 

N=10  0.39 0.16 0.064 0.026 0.010 4x10-3 2x10-3 7x10-4 3x10-4 

N=9 0.89 0.32 0.11 0.042 0.015 6x10-3 2x10-3 7x10-4 3x10-4 1x10-4 

N=8 0.78 0.24 0.076 0.024 8x10-3 2x10-3 7x10-4 2x10-4 8x10-5 3x10-5 

N=7 0.65 0.17 0.045 0.012 3x10-3 8x10-4 2x10-4 6x10-5 2x10-5 4x10-6 

N=6 0.51 0.10 0.021 4x10-3 9x10-4 2x10-4 4x10-5 8x10-6 2x10-6 3x10-7 

N=5 0.36 0.053 8x10-3 1x10-3 2x10-4 3x10-5 6x10-6 9x10-7 1x10-7 2x10-8 

N=4 0.21 0.017 1x10-3 1x10-4 1x10-5 1x10-6 1x10-7 9x10-9 8x10-10 7x10-11 

N=3 0.12 0.011 1x10-3 1x10-4 2x10-5 2x10-6 3x10-7 4x10-8 5x10-9 7x10-10 
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light on the processes of self-organization in human societies. 
Our future research will examine under what conditions coop-
eration can be established by pool-punishers through individual 
learning even in the presents of anti-social punishment.

Notes
(1)	 The defectors obtain two payoffs: 

rc
N

 – B  and 0. When  
rc
N

 

– B ≤ 0, PYmin = rc
N

 – B. Assuming PVmax > PYmin, we obtain 

the condition B > c + G, in which a pool-punisher can invade 

a defector’s society. By contrast, when 
rc
N

 – B ≥, PYmin = 0. 

The condition rc
N

 – c – G > 0 can be derived from PVmax > 

PYmin. These findings are not incompatible because the di-

lemma condition demands that c > 
rc
N  and that the value of 

G be positive. Consequently, we obtain the condition B > c + 
G.

(2)	 The calculated probabilities are 0.18, 0.094, and 0.032 for N 
= 50, 40, and 30, respectively, in M = 150. The other param-
eters are r = 3, c = 1, G = 0.5, and B = 1.6.
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Appendix I
Stationary distributions with average payoffs in social learning:
The model PGG comprises a finite population of players with the three strategies of cooperation, defection, and pool-punishment 
(Sigmund et al., 2010). Public goods are distributed based on altruism. Cooperators contribute to public goods but not to the pun-
ishment-pool, which is used to penalize free-riders and second-order free-riders. As a consequence of overlooking the free-riding, 
cooperators receive a second-order penalty from an agent of the punishment-pool (such as a police officer) delegated by its members. 
Defectors contribute to neither public goods nor the punishment-pool. Moreover, they receive a penalty because of their free-riding. 
Pool-punishers contribute both to the public goods and to the punishment-pool used to penalize both cooperators and defectors. The 
numbers of cooperators, defectors, and pool-punishers are denoted X, Y, and V (M = X + Y + V). Random samples of N individuals 
play the PGG, and x, y, and v respectively denote the quantities of the X, Y, and V participants in a game (N = x + y + v). The average 
payoffs for the players follow those reported elsewhere in the literature (Sigmund et al., (2010), specifically,

.
1
)1(

1
1

−
−

−−
−
−−

=
M

VNBc
M

YMrcPX
 

.
1
)1(

1 −
−

−
−
−

=
M

VNB
M

YMrcPY
 

.
1

1 Gc
M

YMrcPV −−
−
−−

=  

 

For a small probability of mutation μ, the embedded Markov chain describing the transitions between AllX, AllY, and AllV is given as 
shown below.
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For the average payoffs, this transition matrix reduces to the following.
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The stationary distribution for (X, Y, V) is given as (0, 1 – 
V
M ,

V
M

). The population is dependent upon an initial distribution with coexisting defectors and pool-punishers. For the three strategies, a 

cooperative society was not established.
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Appendix II

Table 1b: Fixation probabilities moving from a single pool-punisher to all pool-punishers with one episode of indi-
vidual learning during a generation. The other parameters were r = 3, c = 1, G = 0.5 and B = 1.6. For the values in 
parentheses, the other parameters were r = 1.1, c = 1, G = 0.5 and B = 1.6.

 M =10 M=20 M=30 M=40 M=50 M=60 M=70 M=80 M=90 M=100 

N=20   0.63 0.40 0.26 0.17 0.11 0.072 0.047 0.031 

N=10  0.39 0.16 0.064 0.026 0.010 4×10–3 2×10–3 7×10–4 3×10–4 

N=9 0.89 0.32 0.11 0.042 0.015 5×10–3 2×10–3 7×10–4 3×10–4 1×10–4 

N=8 0.77 0.24 0.076 0.024 8×10–3 2×10–3 7×10–4 2×10–4 8×10–5 3×10–5 

N=7 0.65 0.17 0.045 0.012 3×10–3 8×10–4 2×10–4 6×10–5 2×10–5 4×10–6 

N=6 0.51 0.10 0.021 4×10–3 9×10–4 2×10–4 4×10–5 8×10–6 2×10–6 3×10–7 

N=5 0.36 

(0.36) 

0.054 

(0.050) 

8×10–3 

(7×10–3) 

1×10–3 

(1×10–3) 

2×10–4 

(1×10–4) 

3×10–5 

(2×10–5) 

6×10–6 

(3×10–6) 

9×10–7 

(4×10–7) 

2×10–7 

(5×10–8) 

2×10–8 

(7×10–9) 

N=4 0.21 0.017 2×10–3 1×10–4 1×10–5 1×10–6 1×10–7 9×10–9 8×10–10 7×10–11 

N=3 0.12 0.011 1×10–3 1×10–4 2×10–5 2×10–6 3×10–7 4×10–8 5×10–9 7×10–10 

Table 1c: Fixation probabilities moving from a single pool-punisher to all pool-punishers with three episodes of indi-
vidual learning during one generation. The other parameters were r = 3, c = 1, G = 0.5 and B = 1.6.

 M=10 M=20 M=30 M=40 M=50 M=60 M=70 M=80 M=90 M=100 

N=20   0.63 0.41 0.26 0.17 0.11 0.072 0.047 0.031 

N=10  0.39 0.16 0.064 0.026 0.010 4×10–3 2×10–3 7×10–4 3×10–4 

N=9 0.89 0.32 0.12 0.042 0.015 6×10–3 2×10–3 7×10–4 3×10–4 1×10–4 

N=8 0.78 0.24 0.076 0.024 8×10–3 2×10–3 7×10–4 2×10–4 8×10–5 2×10–5 

N=7 0.65 0.17 0.044 0.012 3×10–3 8×10–4 2×10–4 6×10–5 2×10–5 4×10–6 

N=6 0.51 0.10 0.021 4×10–3 9×10–4 2×10–4 4×10–5 8×10–6 2×10–6 3×10–7 

N=5 0.37 0.053 8×10–3 1×10–3 2×10–4 3×10–5 5×10–6 9×10–7 1×10–7 2×10–8 

N=4 0.21 0.017 1×10–3 1×10–4 1×10–5 1×10–6 1×10–7 8×10–9 8×10–10 7×10–11 

N=3 0.12 0.011 1×10–3 1×10–4 2×10–5 2×10–6 3×10–7 4×10–8 5×10–9 7×10–10 

Table 1d: Fixation probabilities moving from a single pool-punisher to all pool-punishers with five episodes of indi-
vidual learning during one generation. The other parameters were r = 3, c = 1, G = 0.5 and B = 1.6.

 M=10 M=20 M=30 M=40 M=50 M=60 M=70 M=80 M=90 M=100 

N=20   0.67 0.47 0.33 0.23 0.16 0.11 0.079 0.055 

N=10  0.42 0.19 0.081 0.035 0.015 7×10–3 3×10–3 1×10–3 5×10–4 

N=9 0.91 0.35 0.14 0.053 0.020 8×10–3 3×10–3 1×10–3 5×10–4 2×10–4 

N=8 0.80 0.27 0.090 0.030 0.010 3×10–3 1×10–3 4×10–4 1×10–4 4×10–5 

N=7 0.68 0.19 0.0453 0.015 4×10–3 1×10–3 3×10–4 9×10–5 3×10–5 7×10–6 

N=6 0.54 0.12 0.025 5×10–3 1×10–3 3×10–4 6×10–5 1×10–5 3×10–6 6×10–7 

N=5 0.39 0.059 0.010 2×10–3 3×10–4 5×10–5 8×10–6 1×10–6 2×10–7 4×10–8 

N=4 0.22 0.018 2×10–3 2×10–4 1×10–5 1×10–6 1×10–7 1×10–8 1×10–9 1×10–10 

N=3 0.12 0.012 1×10–3 2×10–4 2×10–5 3×10–6 4×10–7 6×10–8 8×10–9 1×10–9 
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Abstract
Human societies are organized around cooperative and altruistic interactions. Natural selection, however, favors selfish and strong 
individuals who maximize their own resources at the expense of others. Although many previous studies with average payoffs have 
developed mechanisms for resolving the cooperation dilemma, they have a severe problem. Estimating the average values requires 
sufficient knowledge of the payoffs for all players in all public goods games (PGGs), which is difficult to achieve in practice. People 
make estimates every day based on insufficient knowledge. The transition probabilities ought to be therefore calculated based on 
known payoffs rather than on the average. Through this individual learning, we show that pool-punishers can overcome free-riders to 
establish stable cooperation within a society without help from non-participants or players using other strategies, even with a small 
multiplier (r) of public goods. This scenario requires the punishment that the free-riders receive to be greater than the cost to the pool-
punishers. We also demonstrate that smaller population sizes and higher participation rates engender greater fixation probabilities for 
cooperation.




