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1. Introduction

Cooperation is a fundamental human behavior (Axelrod &
Hamilton, 1981; Boyd & Mathew, 2007; Clutton-Brock, 2009;
Dugatkin, 1997; Fehr & Fischbacher, 2003; Hill, 2002; Kaplan,
Hill, Lancaster, & Hurtado, 2000; Nowak, 2006; Nowak, 2006;
Trivers, 1971) with the potential to improve individual wealth,
but it remains a fragile strategy. Individuals who do not con-
tribute but who exploit public goods fare better than those who
contribute and pay costs; defectors who are called free-riders
therefore obtain a greater payoff. If strategies that are more suc-
cessful spread, then cooperation will vanish from the population,
and public goods will simultaneously disappear. This propaga-
tion of the defectors’ behavior can drive a population into a
“tragedy of the commons” (Hardin, 1968). Thus, clarifying the
mechanisms underlying this cooperation dilemma in society is
of great importance to many fields of research.

Some prior reports describe how costly punishment might
yield a solution to the problem of the cooperation dilemma
(Boyd, Gintis, & Bowles, 2003; Boyd & Richerson, 1992;
Brandt, Hauert & Sigmund, 2006; Fehr & Géchter, 2002; Fehr
& Giéchter, 2000; Fowler, 2005; Hauert, Traulsen, Brandt,
Sigmund, & Nowak, 2007; Ostrom, Walker, & Gardner, 1992;

Rand, Dreber, Ellingsen, Fudenberg, & Nowak, 2009; Rock-
enbach & Milinski, 2006; Sigmund, Silva, Traulsen, & Hauert,
2010; Sigmund & Hauert, 2001; Silva, Hauert, Traulsen, &
Sigmund, 2010; Yamagishi, 1986). A stable cooperative society,
however, does not form from only the three strategies of coop-
erators, defectors, and pool-punishers, as shown in Appendix [
with a stochastic model. Cooperators contribute but do not pun-
ish. Defectors do not contribute to the public good but exploit
the contributions of the other participants. Pool-punishers con-
tribute to the public good and punish all participants who do not
contribute to the punishment mechanism. When one punisher
invades a state occupied by defectors, he gains a meager payoff
from public goods but must contribute to both public goods and
the punishment pool. In contrast, although the defectors receive
dispersed punishment by the punisher, they gain their payoff
from public goods. Therefore, the defector payoft is greater than
that of the punisher: the punisher cannot invade the state which
the defectors occupy. Consequently, a cooperative society does
not form.

Some previous studies (Brandt et al., 2006; Hauert et al.,
2007; Silva et al., 2010) developed a voluntary public goods
game based on the average payoffs and gave the necessary con-
ditions for natural selection to favor the emergence of coopera-
tion in finite populations. Sigmund et al. also reported that pool-
punishers will invade and take over with the four strategies of
cooperation, defection, pool-punishment, and loner (Sigmund et

Journal of Human Environmental Studies, Volume 12, Number 2



182

al., 2010). These studies rely on the assumptions that players can
decide voluntarily whether to participate in the joint enterprise
and that loners who do not participate can obtain an income in-
dependently of the other players’ decisions. But, the loners live
alone, getting no payoffs from anyone else. They incur a cost
for choosing to be alone. The assumption is therefore illogical.
Accordingly, the payoff of the loner can be lower than that of
the community in which all residents are defectors, where a co-

operative society does not emerge.

2. Problem and Purpose

Now we must point out a severe problem in these studies based
on the average payoffs. Estimating the average values requires
sufficient knowledge of the payoffs for all players in all PGGs.
Such omniscience is clearly difficult to achieve in practice. Peo-
ple make estimates every day based on insufficient knowledge.
Players, therefore, make their decisions based on the payoffs
received in games played before. Here we examine in compul-
sory PGGs how pool-punishers overcome defectors in societies
comprising those following the three strategies of cooperation,
defection, and pool-punishment through individual learning
using knowledge of the payoffs from previous encounters, not

based on the average payoffs.

3. Model and method

In the compulsory PGG considered here, M denotes the popu-
lation size with variable compositions of X, ¥, and V' (M =X
+ Y + V) as the quantities of cooperators, defectors, and pool-
punishers. The method is based on a straightforward application
of evolutionary game theory to PGGs for finite populations
of fixed size (M). Random samples of N individuals chosen
from M individuals play a compulsory PGG (M > N). If N > 2
individuals participate in the interaction, then each can decide
whether to contribute a fixed amount, ¢ > 0, to the common-
pool, and whether to contribute a fixed amount, G > 0, to the
punishment-pool. ¢ is multiplied by a factor of » (N > r > 1)
and is divided among all players. Each player obtains rc — ¢ if
all players contribute, whereas their payoffs are 0 if all self-
interested players contribute nothing. Punishers specify and
sanction players, through imposing penalties, based on the lat-
ters’ behaviors in a round. The payoffs for the players are the
following, where x, y, and v respectively denote the numbers

of participants of X, ¥, and V' (N = x + y + v). For x-players, the

payoffs are ¢ v ¢ — By in the presence of y-players and

re XY _ ¢ in the absence of y-players. For y-players, the pay-
+v X +v

off is r¢ a — Bv. For v-players, the payoff is rc

—c—G.

The PGG continues until all M individuals in a generation have
played. Individual learning is executed as follows. Two play-
ers, i and j, who act respectively as a student and a teacher, are

chosen randomly. Student 7 adopts the strategy of teacher j with

NG a2
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I+ exp[fs(p/. -p)
obtained from previous games (Blume, 1993; McFadden, 1981;

Sigmund et al., 2010; Szabo & Toke, 1998; Traulsen, Nowak,
& Pacheco, 2006). This process is repeated for two or more epi-

probability for s — oo, where payoffs are

sodes of learning. Once the learning is completed, the strategies
are changed according to the probabilities. The strategy of a ran-
domly chosen player is changed by mutation. Each generation is
established in this way. Evolution proceeds over many genera-

tions.

4. Results and discussion
The appearance of a pool-punisher in a state occupied by defec-
tors is considered. Two combinations in PGGs are considered.

The first combination comprises a single pool-punisher and N-1

rc

defectors. The pool-punisher’s payoff is —¢— G- The de-

rc

fector’s payoft is — B. The second combination comprises
only defectors, whose payoff is zero. The payoffs to players
depend on their partners in these PGGs and might differ from
the average. Moreover, in this setting, learning leading to the
preferential copying of successful strategies is dependent on the
payoffs used.

Given a case of individual learning in which two chosen
individuals have knowledge of each other’s payoffs from previ-
ous games, and assuming that a pool-punisher with a maximum
payoff (Py,.,) 1s designated as a teacher and that a defector with
a minimum payoff (Py,,;,) is designated as a student, then if the
value of Py, is higher than that of P,,,, defectors will imitate
pool-punishers. The number of pool-punishers will increase if
such a case occurs repeatedly by chance. Accordingly, invasion
by a single pool-punisher requires that Py, > Pynin- The case is
described by the equation B > ¢ + G, where the punishment (B)
that the defector receives is greater than the cost (¢ + G) to the
pool-punisher.

Next considering the case of i (i > 2) pool-punishers and M
— i defectors, based on the condition B > ¢ + G, the maximum
payoff for the pool-punishers is higher than the minimum payoff
for the defectors. Therefore, the defectors will imitate the pool-
punishers and the pool-punishers thereby establish stable coop-
eration which defectors cannot invade. In addition, the transition
probabilities with these payoffs resemble those with the average
payoffs for the conversion of all cooperators to all defectors and
vice versa, and for the conversion of all cooperators to all pool-
punishers and vice versa. This demonstrates that pool-punishers
can establish a cooperative society under the condition B > ¢ + G.

A stationary distribution is computed using a transition
matrix for the payoffs from previous games through individual
learning. The fixation probabilities p,, and p,, tend to differ
=0,
pry =0, and p,y = 0 under the condition B > ¢ + G. The transi-

from the average payoffs, although some are the same: p,,

tion matrix therefore reduces to the following:
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_Pxr  Pxw  Pxr Pxr

2 2 2 2
Pyr
1=
2 Pyv
0 1

In this matrix, py, # 0 and p,, # 0. The stationary distribution for
(X, Y, V) is therefore given as (0, 0, 1), meaning that the pool-
punishers eventually prevail. That is, under the condition B > ¢
+ G, pool-punishers can establish a cooperative society stably.
Moreover, pool-punishers prevail in the four-strategy case that
includes peer-punishers in addition to these other three strate-
gies. The constraint B > ¢ + G means that the defector’s punish-
ment is greater than the pool-punisher’s cost. This inequality
corresponds to a social rule within a policing system whereby
the authorities impose an additional penalty on a tax cheat. Our
society accepts this restriction as a rational rule.

We should note the following point when a pool-punisher
appears in a state occupied by defectors. In a case where a single
pool-punisher overcomes N — 1 defectors, the cost G is convert-
ed to the total punishment B(N — 1). This conversion equates to
a high-performance punishment mechanism. Examples of such
practices might be found in primitive religions, white magic,

oracles, shamanism, and social norms (Benson, 1989; Eliade,
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Figure 1: Evolution of competition in populations consisting of
X, Y, and V under condition B > ¢ + G. Parameters are M = 20,
N=5r=3¢=1,G=05,B=1.06,and u =10". Updating oc-
curred by strong imitation (s — ), i.e., a student with a lower
average payoff always imitated a teacher with a higher average
payoff. The initial populations were set as X =0, Y= 20, and V'
=0.
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Figure 2: Evolution of competition in populations consisting of
X, Y, and V under condition B > ¢ + G. Parameters are the same

as those in Figure 1, except ¢ = 1.1.

1972; Malinowski, 1961; Weber, 1976; Sugiyama, 1991). How-
ever, further research is necessary to clarify this situation.

The long-term frequencies of the three strategies can be exam-
ined using numerical simulations for a case in which the two
individuals chosen as the student and the teacher know each
other’s payoffs from their previous games through individual
learning. For the case where M = 20 and N = 5, Figure 1 shows
that a single pool-punisher who appears repeatedly by mutation
eventually overcomes defectors in some generation under the
condition B > ¢ + G, even when the value of 7 is close to 1 (Figure
2). However, when the condition B > ¢ + G is not satisfied, de-
fectors prevail as shown in Figure 3.
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Figure 3: Evolution of competition in populations consisting of

X, Y, and V under condition B < ¢ + G. Parameters are the same
as those in Figure 1, except B =1.4.
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Figure 4: Evolution of competition in populations consisting
of X, Y, and V with a larger population and higher participation
rate. Parameters are M =100, N=20,r=3,¢c=1,G=0.5,B=
1.6, and x = 10", Initial populations were set as X =0, ¥ = 100,
and V'=0.
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Figure 5: Evolution of competition in populations consisting of
X, Y, and V with a larger population and lower participation rate.
Parameters are M = 100, N=5,r=3,¢c=1,G=0.5 B=1.6,
and u = 10*. Initial populations were set as X = 0, ¥ = 100, and
V=0.
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Two simulation results with N =20 and N = 5 in M = 100 are
shown respectively as Figures 4 and 5. In N = 20 (Figure 4),
a single pool-punisher easily overcomes defectors under the
condition B > ¢ + G. Nevertheless, as presented in Figure 5 for
N =5, a pool-punisher cannot overcome defectors with a lower
participation rate even if the restriction is satisfied. This inability
demonstrates that establishing a cooperative society depends on
the participation ratio. This result agrees well with a sociolo-
gist’s observation (Olson, 1965; Putnam, 1993). In contrast,
prior works based on the average payoffs reported that establish-
ing a cooperative society is independent of the participation rate,
which is inconsistent with the observation.

We next specifically examine the probability of fixation when
moving from a state with a single pool-punisher and M — 1 de-
fectors to a state with M pool-punishers under the condition B >
¢+ G. This relates to the time period for establishing a coopera-
tive society.

In a case with one individual learning episode per generation,
Nowak (2006) reported that the fixation probability x, is the

equation x, = when moving from a state with a

N-1_J
1+ z H 7
J=i k=i

single pool-punisher and M — 1 defectors to that with M pool-

punishers. Here, 7, = 3 and o, and p, respectively denote the
7

probabilities of transitions from £ to £+ 1 and from kto k— 1. In

a case with two episodes of individual learning per generation,

the fixation probabilities are expressed as follows:

X X
X X
1 1
= P|
xM xM
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Here, Py, and P, respectively denote the defector’s and pool-
punisher’s payoffs obtained by N — 1 defectors and a single
pool-punisher in their PGG

ForN=5,r=3,c=1,G=0.5, and B = 1.6, the magnitudes
have the following order:

PV5>PV4>PV3>PY5>PV2>PV1>PY4>PY3>PY2>PY1'

We can thereby obtain the following equations:

=&.NV5+NV4+NV3 +NY4+NY3+NY2+NY1.NV5+NV4+NV3

k

M M-1 M M-1

+NY4+NY3+NY2+NY]_NV2+NVI

M M -1
:NY5+NY4+NY3+NY2+NY1 .NV5+NV4+NV3

M M -1

+NY4+NY3+NYZ+NY1 .NV2+NV1.

M M -1
ﬂ :NVZ+NV1.NY5

¥ M M -1

Here, N, and Ny, respectively denote the numbers of pool-
punishers with a payoff of P,, and defectors with a payoff of
Py, in a population of M individuals. After a sufficient number

of games, they are expressed as shown below.

V)

I
-

Here, P is expressed by the matrix at the bottom of this page: (VJ(M - Vj
Calculating the values of a, and f, requires knowledge of the or- Ny, =M- h A]Z_ k N-h )
der of the magnitudes of the pool-punisher’s payoffs P, and the (N] N
defector’s payoffs P,. Although the values are dependent on the
parameters c, r, G, and B, their order is the following:
> P> > Py > Py > P> > P> Py
1 0 0 0 [UNE 0 0 0 0 0
By 1—ay =Py ay, a, 0 - 0 0 0 0 0
Bz, B, 1-ay, a1, =P, =2, @1, @y 0 0 0 0 0
0 0 0 0 0 © By Bimey 1@y~ iy, = By, —Pays X1y X2p-2
0 0 0 0 0 0 By, Biy—s T=agy g~y g =Py = Bayoy P1yoy
0 0 0 0 0 - 0 0 0 0 1

where Ay =0 alk’:z'ak (I=a, =B, ﬁlkzz'ﬂk (I-a,=p)> and ﬂz, =P By

NG a2
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Therefore, we can derive the following equations:

w[é.@(ﬁiﬂwh>~§;(’ZJ(A§2‘Jh

(M -1)N ( N
S B
< i1 (15 )

For the case in which N=5,r=1.1,c=1,G=0.5,and B= 1.6,
the order of the magnitudes is

ak=

PY5>PV5>PV4>PV3>PV2>PV1 >PY4>PY3>PY2>PY1
and we can thereby obtain the following equations:

o = Nys+Nys + Ny + Ny Nys + Ny + Nps + Ny +Ny _
! M M-1

_ Nys+N,,+N,;+ N, + N, . Nys
M M-1

By

Table 1 presents results for a case with a low mutation rate
and two episodes of individual learning during one generation.
Fixation probabilities decrease concomitantly with increased M
and decreased N, i.e., the fixation probability decreases with a
decrease in the participation rate in PGG. A probability of 0.001
is obtained for five participants in a population of 40 individu-
als. The emergence of a cooperative society requires that, on

average, one pool-punisher arises per 1,000 events. Because

pool-punishers appear repeatedly by mutation and because
the cooperative society is stable once it has been established,
this value is not regarded as unrealistic. Dunbar reported that
establishing a stable cooperative society required 30-50 partici-
pants in a population of about 150 individuals (Dunbar, 1993).
In the current case, the calculated probabilities are 0.03-0.18,
which easily establishes cooperation.” It is noteworthy that the
calculated probabilities are greater when the population size is
smaller and the participation rate is higher. The observation of
larger probabilities in smaller groups agrees

with sociological findings (Olson, 1965). Our results are also
consistent with Putnam’s observation that the participation rate
is highly correlated with the emergence of cooperation (Putnam,
1993). Notably, the mutation rate is related to the emergence of
a pool-punisher in a defector’s society. Higher values shorten
the period necessary to establish a cooperative society. More-
over, if pool-punishers or cooperators who appear by mutation
in a defector’s society are not chosen as students in the learning,
they persist in the succeeding generation, leading to a higher
probability than that calculated here and relaxing the require-
ment that B> ¢ + G.

5. Conclusion

Through individual learning, we examined how pool-punishers
overcome defectors to establish stable cooperation within a so-
ciety without help from either non-participants or players using
other strategies. The main results are presented below. A pool-
punisher can establish stable cooperation easily in a society,
provided that the defector’s punishment is greater than the pool-
punisher’s cost, which is consistent with our social rules. Higher
fixation probabilities were found to be obtained with a smaller

population size and a higher participation rate. This study shed

Table 1: Fixation probabilities moving from a single pool-punisher to all pool-punishers with two episodes of indi-

vidual learning during a generation. The probability shows that a smaller population and a higher participation rate

higher values. The other parameters; »=3; c=1; G=0.5; B=1.6.

M=10 | M=20 | M=30 | M=40 | M=50 | M=60 | M=70 | M=80 | M=90 M=100
N=20 0.63 0.41 0.26 0.17 0.11 0.072 0.047 0.031
N=10 0.39 0.16 0.064 0.026 0.010 4x10° | 2x10° | 7x10* 3x104
N=9 0.89 0.32 0.11 0.042 0.015 6x107 | 2x10° | 7x10* | 3x10* 1x104
N=8 0.78 0.24 0.076 0.024 8x103 | 2x10 | 7x10* | 2x10* | 8x107 3x10°7
N=T7 0.65 0.17 0.045 0.012 3x103 | 8x10* | 2x10* | 6x10 | 2x10° 4x10°¢
N=6 0.51 0.10 0.021 4x103 | 9x10* | 2x10* | 4x10° | 8x10° | 2x10°° 3x107
N=5 0.36 0.053 8x107° | 1x10° | 2x10* | 3x10° | 6x10¢ | 9x107 | 1x107 2x10-8
N=4 0.21 0.017 1x103 | 1x10* | 1x10° | 1x10¢ | 1x107 | 9x10° | 8x10°10 | 7x10°"!
N=3 0.12 0.011 1x10° | 1x10* | 2x10° | 2x10° | 3x107 | 4x10® | 5x10° 7x10°10

Journal of Human Environmental Studies, Volume 12, Number 2



186 VeERP Fefh o 3Rl ZINALLW 7 — 2B W TEBIEHE 208 LT B2 7 — VEIRRIE 23 7 V) — F o & —HRIR IR 5

light on the processes of self-organization in human societies.
Our future research will examine under what conditions coop-
eration can be established by pool-punishers through individual

learning even in the presents of anti-social punishment.

Notes
. . re re
The defectors obtain two payoffs: N B and 0. When N
-B<0, Pypin = € _B. Assuming Py, > Pypnin, We obtain

max

the condition B > ¢ + G, in which a pool-punisher can invade
. rc

a defector’s society. By contrast, when - B>, Py,.,= 0.

The condition - — ¢ — G > 0 can be derived from Pypax >
N
Py..... These findings are not incompatible because the di-
rc

lemma condition demands that ¢ > N and that the value of
G be positive. Consequently, we obtain the condition B > ¢ +
G.

The calculated probabilities are 0.18, 0.094, and 0.032 for N
=50, 40, and 30, respectively, in M = 150. The other param-
etersare r=3,c=1,G=0.5,and B=1.6.
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Appendix |

Stationary distributions with average payoffs in social learning:

The model PGG comprises a finite population of players with the three strategies of cooperation, defection, and pool-punishment

(Sigmund et al., 2010). Public goods are distributed based on altruism. Cooperators contribute to public goods but not to the pun-

ishment-pool, which is used to penalize free-riders and second-order free-riders. As a consequence of overlooking the free-riding,

cooperators receive a second-order penalty from an agent of the punishment-pool (such as a police officer) delegated by its members.

Defectors contribute to neither public goods nor the punishment-pool. Moreover, they receive a penalty because of their free-riding.

Pool-punishers contribute both to the public goods and to the punishment-pool used to penalize both cooperators and defectors. The

numbers of cooperators, defectors, and pool-punishers are denoted X, Y, and V' (M = X + Y + V). Random samples of N individuals

play the PGG, and x, y, and v respectively denote the quantities of the X, ¥, and ¥ participants in a game (N = x + y + v). The average

payofts for the players follow those reported elsewhere in the literature (Sigmund et al., (2010), specifically,

M-Y-1__ BN-V

P, =rc
M -1 M -1
B _ M-y BNV
M -1 M -1
b, =rcw—c—G.

M -1

For a small probability of mutation x, the embedded Markov chain describing the transitions between Ally, Ally, and All, is given as

shown below.

1-Pxy _ P Pxr. Py
2 2 2 2
Pw o _Pu,Pw Pw
2 2 2 2
Prx Prr. _ P _Pw
2 2 2 2

For the average payoffs, this transition matrix reduces to the following.

T,
2 2
0 1 O0f
0 0 1

V
The stationary distribution for (X, ¥, V) is given as (0, 1 — 7,

—). The population is dependent upon an initial distribution with coexisting defectors and pool-punishers. For the three strategies, a
M

cooperative society was not established.
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Appendix Il

Table 1b: Fixation probabilities moving from a single pool-punisher to all pool-punishers with one episode of indi-

vidual learning during a generation. The other parameters were » = 3, ¢ = 1, G = 0.5 and B = 1.6. For the values in

parentheses, the other parameters were »=1.1,¢c=1, G=0.5and B = 1.6.

M=10 | M=20 M=30 M=40 M=50 M=60 M=70 M=80 M=90 M=100
N=20 0.63 0.40 0.26 0.17 0.11 0.072 0.047 0.031
N=10 0.39 0.16 0.064 0.026 0.010 4x107 2x107? 7x107* 3x107*
=9 0.89 0.32 0.11 0.042 0.015 5x10° 2x107 7107 3x10° 1x10°*
N=8 0.77 0.24 0.076 0.024 8x107° 2x107° 7x107* 2x107* 8x107 3x107°
N=7 0.65 0.17 0.045 0.012 3x10° 8x10* 2x107* 6x10° 2x10°7° 4x10°¢
=6 0.51 0.10 0.021 4x107 9x10™* 2x107* 4x107° 8x10°° 2x10°° 3x107
N=5 0.36 0.054 8x107° 1x10°7 2x10°* 3x10° 6x10° 9x107’ 2x107 2x10°
0.36) | (0.050) | (7x107) | (1x107) | (1x10™) | (2x107) | (3x10°) | @x107) | (5x107%) | (7x107)
N=4 0.21 0.017 2x10° 1x10°* 1x10°7° 1x10° 1x107 9x10”° 8x107"° 7x107"
N=3 0.12 0.011 1x107° 1x10™ 2x107° 2x10°° 3x107 4x10°® 5x107° 7x1071°

Table lc: Fixation probabilities moving from a single pool-punisher to all pool-punishers with three episodes of indi-

vidual learning during one generation. The other parameters were ¥ =3,c=1, G=0.5 and B =1.6.

M=10 | M=20 | M=30 | M=40 | M=50 | M=60 | M=70 | M=80 | M=90 | M=100
N=20 0.63 0.41 0.26 0.17 0.11 0.072 | 0.047 | 0.031

N=10 0.39 0.16 0.064 0.026 0.010 4x10° | 2x10° | 7x10* | 3x10°*
N=9 0.89 0.32 0.12 0.042 0.015 6x10° | 2x10° | 7x10* | 3x10* | 1x10*
N=8 0.78 0.24 0.076 0.024 8x107° | 2x10° | 7x10* | 2x10* | 8x10° | 2x10°
N=7 0.65 0.17 0.044 0.012 3x10° | 8x10* | 2x10* | 6x10° | 2x10° | 4x10°
N=6 0.51 0.10 0.021 4x107 | 9x10™* | 2x107* | 4x107 | 8x10° | 2x10° | 3x1077
N=5 0.37 0.053 8x107° | 1x107 | 2x10* | 3x10° | 5x10° | 9x107 | 1x107 | 2x10°®
N=4 0.21 0.017 1107 | 1x10™ | 1x107° | 1x10° | 1x107 | 8x107° | 8x107'° | 7x107"
N=3 0.12 0.011 1x10° | 1x10* | 2x10° | 2x10°% [ 3x107 | 4x10® | 5x10° | 7x107°

Table 1d: Fixation probabilities moving from a single pool-punisher to all pool-punishers with five episodes of indi-

vidual learning during one generation. The other parameters were ¥ =3,c=1, G=0.5 and B = 1.6.

M=10 | M=20 | M=30 M=40 | M=50 | M=60 | M=70 | M=80 | M=90 | M=100
N=20 0.67 0.47 0.33 0.23 0.16 0.11 0.079 | 0.055
N=10 0.42 0.19 0.081 0.035 0.015 7x10° | 3x10° | 1x10° | 5x10°*
=9 0.91 0.35 0.14 0.053 0.020 8x107° | 3x10° | 1x107° | 5x10* | 2x10°*
N=8 0.80 0.27 0.090 0.030 0.010 3x10° | 1x10° | 4x10* | 1x10* | 4x10°
N=7 0.68 0.19 0.0453 0.015 4x107 | 1x107° | 3x10* | 9x10° | 3x10° | 7x10°
=6 0.54 0.12 0.025 5x107° | 1x107 | 3x10* | 6x10° | 1x10° | 3x10° | 6x107
N=5 0.39 0.059 0.010 2x107° | 3x107* | 5x10° | 8x10° | 1x10° | 2x107 | 4x10°®
N= 0.22 0.018 2x107 2x107* | 1x10° | 1x10° | 1x107 | 1x10® | 1x10° | 1x10"
N=3 0.12 0.012 1x10°7 2x107* | 2x10° | 3x10° | 4x107 | 6x10° | 8x107° | 1x107°
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Abstract
Human societies are organized around cooperative and altruistic interactions. Natural selection, however, favors selfish and strong
individuals who maximize their own resources at the expense of others. Although many previous studies with average payofts have
developed mechanisms for resolving the cooperation dilemma, they have a severe problem. Estimating the average values requires
sufficient knowledge of the payoffs for all players in all public goods games (PGGs), which is difficult to achieve in practice. People
make estimates every day based on insufficient knowledge. The transition probabilities ought to be therefore calculated based on
known payoffs rather than on the average. Through this individual learning, we show that pool-punishers can overcome free-riders to
establish stable cooperation within a society without help from non-participants or players using other strategies, even with a small
multiplier (r) of public goods. This scenario requires the punishment that the free-riders receive to be greater than the cost to the pool-
punishers. We also demonstrate that smaller population sizes and higher participation rates engender greater fixation probabilities for

cooperation.
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